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J. Phys.: Condens. Matter 2 (1990) 6045-6069. Printed in the UK 

Anharmonic theory of partially ordered and disordered 
phases in magnets with easy-plane single-ion anisotropy 

F P Onufrieva 
Department of Physics, Odessa State University, 270057 Odessa, USSR 

Received 11 May 1989, in final form 31 October 1989 

Abstract. Dynamic properties of collinear phases realised in magnets with easy-plane single- 
ion anisotropy in an external magnetic field perpendicular to an 'easy plane' are studied. A 
phase diagram characterised by the existence of acascadeof reorientationalphase transitions 
induced by the field and the single-ion anisotropy is constructed. The spectrum of collective 
excitations, their damping, scattering amplitudes, critical fields at low temperatures, position 
of multicritical points, and critical behaviour peculiarities at T = 0 in the vicinity of the 
second-order phase transition lines and of the multicritical points are investigated. 

1. Introduction 

Recent investigations have shown that the behaviour of magnets with single-ion ani- 
sotropy (SA) differs substantially from that of exchange-anisotropy magnets of the same 
symmetry. In the case of easy-plane ferromagnets (FM) this difference is so large that it 
qualitatively changes the phase diagram. Namely, in the SA case there can be a cascade 
of the 2S second-order field-induced phase transitions [l] whereas in the exchange- 
anisotropy case only one phase transition is possible ( S  is the site spin value). The phases 
in the cascade undergo transformation from ferromagnetically disordered phase to 
saturated ferromagnetic phase via partially ordered ones. A schematic representation 
of the T-h phase diagram of a ferromagnet with SA for some value of D greater than D = 
J S ( S  + 1) is given in figure 1 and the D-h phase diagram at T = 0 for the case S = 2 is 
given in figure 2. (Here Tis the temperature, h is the magnetic field, D is the SA constant 
and J is the exchange integral; the phase diagram is constructed using the results of [ 11 .) 
The phase diagrams are characterised by the alteration of phases with spontaneously 
broken symmetry with respect to rotations around the hard axis and the phases with the 
preserved symmetry, so that at h = const the cascade of the second-order anisotropy- 
induced phase transitions is realised and at D = const the cascade of the second-order 
field-induced phase transitions is realised. The specific feature of the phase diagram is 
the existence of multicritical points (MP), i.e. points A(") in figure 2. At arbitrary S the 
general form of the phase diagram at T = 0 is preserved, the number of fragments with 
MP A(m) is 2S - 1, m acquires the values S ,  S - 1, . . . , - S .  The multicriticality character 
of the points A@) is demonstrated in figure 3 where the central fragment of the phase 
diagram is given in the coordinate system T-D-h (for the case of S = 1). 

0953-8984/90/276045 + 25 $03.50 @ 1990 IOP Publishing Ltd 6045 
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Figure 1. The T-h phase diagram of an easy-plane 
magnet for the case of integer S and 
D > JJ(S + 1). Shaded areas are the phases with 
spontaneously distorted symmetry (non-collinear 
phases), the unshaded areas are the phases with 
conserved symmetry (collinear phases). Collinear 
phases are numbered with number m such that at 
T = 0 exact equality (S’) = m is valid and they are 
transformed from magnetically ordered phase at 
m = 0 to saturated FM phase at m = S via partially 
ordered phases. 

Figure 2. The h-D phase diagram at T = 0 for S = 
2. Lines 1 and 2 are the lines of the second-order 
reorientatiocal phase transitions between non- 
collinear (shaded area) and collinear (unshaded 
area) phases: 1, h$)(E);  2, h$)(E).  Line 3 is the 
collinear phase symmetry line determined by 
equality H = A2. A(m) are the multicritical points. 

In [ 11 the properties of non-collinear and collinear phases were investigated in the 
spin-wave approximation. The purpose of the present paper is the construction of the 
non-linear low-temperature theory of collinear phases, which takes into account the 
quasi-particle interaction processes. 

For these phases the total magnetic moment Y’ = (l/N)Zl Sf is the motion integral; 
at T = 0 exact equality (S’) = m is valid, and according to this we enumerate the collinear 
phases with number m taking values 0, 1, . . . , S for integer S and 4, $, . . . , S for half- 
integer S. 

Thus the aim of our paper is to describe the dynamics of the collinear phase with an 
arbitrary m at an arbitrary S. In the limiting cases m = 0 and m = S the results should 
coincide with the known results for the non-magnetic phase [2] and isotropic FM [3] (the 
latter at D = 0). The Goldstone theorem and the Adler principle? should be valid in the 
latter case. Moreover, the kinematic condition should be fulfilled, namely at S = t all 
effects associated with the SA should disappear. 

For a description of dynamic properties of these phases, the standard magnetism 
theory transformations, i.e. Holstein-Primakoff and Maleev-Dyson transformations, 
are not applicable since they presuppose (i) full FM ordering at T = 0 (( = S) and 
(ii) the existence of a single mode of collective excitations described by the Bose 
operators of these transformations. Neither condition is fulfilled in our case. Therefore, 
we make use of the special transformation developed in [6 ] ,  which is the generalisation 
of the above transformations for the case when there are tensor interactions in the system 
(SA is the local tensor interaction). 

t The term ‘Adler principle’ means the certain symmetry relations for scattering amplitudes (see for example 
[4]) which are identical to the Adler theorem for systems with a degenerate vacuum [ 5 ] .  For example these 
relations lead to the fact that amplitude tends to zero when the scattered quasi-particle wavevector tends to 
zero. 
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Figure 3. Central fragment of the phase diagram 
with multicritical point A(') in T-D-h coordinates 
(it is given for the case of S = 1). 

It should be mentioned also that, in accordance with the concept in [6], ordering in 
any phases realised in systems with SA is described by the order parameter with both 
vector (FM) and tensor components in the general case. In the case under consideration 
for the collinear phase numbered with m, the contribution of ferromagnetic components 
is proportional to m and the net contribution of the tensor components is proportional 
t o S - m .  

In this paper the spectrum of low-energy excitations, their damping, scattering 
amplitudes, thermodynamic properties of collinear phases, criticai fields at low T ,  
position of multicritical points, and peculiarities of critical behaviour at T = 0 in the 
vicinity of the second-order phase transition points and the multicritical points are 
determined. The results are obtained in the first approximation on r i 3  for the spectrum 
and in the second approximation for the thermodynamic functions ( y o  is the exchange 
interaction radius). The difference in the system behaviour in the cases of ferro- and 
antiferromagnetic exchange is analysed. 

2. Hamiltonian 

The Hamiltonian of a ferromagnet with the easy-plane SA in the field perpendicular to 
the 'easy plane' has the form 

= --E 1 J i j ( S i S j )  + D 2 (Sf)2 - h 2 ST (D > 0). 
2 ,  i I 

Let us use transformation [6] from the spin and tensor operators to the Bose operators. 
As for the collinear phases the local coordinate system coincides with the initial ones 
[ l ] ,  we pass directly from the spin and tensor operators to the Hubbard ones 

S S 

S +  =L 2 y s ( n ) X n + l * n  s- =- 2 ys(n)Xn,n+l  
(2) 

~ ' 2  n= -s 

S' = I3 nXnn 

v2 n= -s 

y s ( n )  = [(s - n ) ( S  + n + I ) ] ' ' ~  
n 
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and then to the Bose operators by the formulae 

Herepo is the ion ground level, pe are the excited levels, e = 1 , 2 .  . . , 2S .  Analysing the 
Hamiltonian in the molecular-field approximation, one can easily see that for the 
collinear phase numbered with m the ground level is 1 m),  the nearest excited levels are 
I m - 1)  and I m + I ) ,  and the next-nearest levels are 1 m - 2)  and 1 m + 2) .  As was shown 
[ 11, in the spin-wave approximation there are two modes of collective excitations (a and 
p modes) with frequencies o E'@ which are the superposition of itinerant transitions 
1 m) + I m -+ 1); the other excitations remain localised and do not affect the dynamics of 
the system. One can easily prove that with the anharmonic effects taken into account 
someof them, namelyexcitations I m) -+ I m 2 2) ,  play anessential part: they are involved 
in inelastic scattering of quasi-particles with frequencies W E ~ P .  One can also see that 
other excitations connected with the transitions to higher levels still describe the sub- 
system of high-lying localised excitations, which is independent of the subsystem of low- 
energy quasi-particles and, consequently, produces no effect on the low-temperature 
dynamics of the system. 

Thus while describing the low-temperature dynamics one has to take into account 
only four operators of the 2S Bose operators introduced by the full transformation, 
namely a = a l ,  b = a2, associated with the transitions to levelspl = m - l ,p ,  = m + 1, 
and c = a 3 ,  d = a4,  associated with the transitions to levels p3 = m - 2 ,  p4 = m + 2. 
Consequently, in equation ( 2 )  sums over n should be restricted to n = m f 1, m +. 2. 

As a result, the Hamiltonian describing the collinear phase numbered with m acquires 
the form: 

where X n  are the forms of order n with respect to the Bose operators. Passing to 
the wavevector space one obtains the following quadratic form describing the system 
dynamics in the Gaussian approximation: 

where 

y c  = 4D(1 - m) + 2 ( J o m  + h)  Y d  = 4D(1 + m) - 2 ( J o m  f h)  

J~ = J ,  eik.(Ri-R,) .  

i - j  
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The Hamiltonians describing the quasi-particle interaction processes are 

- b:b2+b3b4 - a : a ~ a 3 a 4 )  + (J4/2)[y,2(m)(b:b:h3b4 

+ b : 4 a 3 b 4 )  + y,2(-m)(a:a:a3a4 + a:b:b3a,)] 

+ ( J , / 2 ) y , ( m ) y , ( - m ) ( a : b : ~ ' ~ u ~  + ~ ; b : b ? ~ b ~  

+ + b:a:bT3b4)}S(1 + 2 - 3 - 4) (6) 
and 

X 3  = [V,,(l, 2)b:b:d, + V&, 2)a:a:cs + HC] ( 7 )  
123 

where 

Vbd(1, 2 )  = -h(J1 + J2)Ys(m)Ys(m + l) 

VQC(1,2) = -it(J1 + Jz>rs(-m>rs(-m - 1). 

(X5 and X 6  are not written here since they are not used below; HC is the Hermitian 
conjugation symbol.) 

3. Gaussian approximation for ferromagnetic exchange case (J > 0) 

In this section and below we pass to the relative values renormalised byJo(S2 + S - m2). 
In particular, we introduce relative anisotropy, magnetic field and collective excitation 
spectrum 

E = D / J o ( S 2  + S - m2)  

S 2 t . S  = W ~ @ / J ~ ( S ~  + S - m2> 

H = h/Jo(S2 + s - m2) 

(8) 
Ye = ye /Jo(S2  + S - m2) ( e  = c ,  d )  

and dimensionless parameters 

r = ys(m)ys(-m)/(S2 + S - m2)  F =  l / ( S 2  + S - m2). (9) 

Hamiltonian (4) is diagonalised by the u-U transformation 

ak+ = uka: + V k P k  

a k  = u k ( Y k  + u k p :  

bk+ = U k P T k  + u k a - k  

b k  = U k P - k  + v k a ' k .  
(10) 

The spectrum and the functions of the u-U transformation have the form 

Q;'@ = & k  ? [ H  - A2 + v ( 1  - V k ) ]  

& k  = ( s g n A k ) { [ E  - ( r  + l )Vk /21[6  + ( r -  1 ) V k / 2 ] } 1 ' 2  (11)  
A2 = m(26 - F/2)  y k  = 2 elks6 V = mF/2 

6 
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and 

The (Y- and /3-mode softening lines define the lines of the second-order phase transitions 
to the non-collinear phases [l]-lines 1 and 2 in figure 2, which, in this approximation, 
are described by the formulae 

H$,)c2(5) = A2 It A1 ( A ,  E O ) .  (13) 

Points where H$)  = Hi?) defined byequalities A,  = 0, H = A 2  (points A(")in phase 
diagram of figure 2) are the multicritical points (MP) characterised by a peculiar spectrum 
behaviour, namely, there are two soft modes with the linear dispersion law at small 
k - Mf: = Qf - k instead of one soft mode with the quadratic dispersion law at any 
other point of lines H p ) (  E ) .  

Lines H = A2 (lines 3 in figure 2) are the symmetry lines of the collinear phase with 
fixed m. At these lines the spectrum at k = 0 is degenerate, Qg = Q g ;  at H > A2 the 
low-lying mode is that with frequency Q k  decreasing with H and at H < A2 that with 
frequency Q $ increasing with H .  Since low-temperature behaviour of thermodynamic 
functions is defined by the low-energy mode behaviour, particularly by the field depen- 
dence of the frequencies, the lines H = A2 are simultaneously the lines separating the 
regions with qualitatively different behaviour of some macroscopic properties. For 
example the magnetisation M' and spin heat capacity, which are connected with the 
spectrum by formulae [7] 

B 

M Z ( T )  - ~ " ( 0 )  = -2 ( a o f / a h ) n ( o % )  C, (T)  = (a/aT) w t n ( o t )  
4 kp 

( n ( x )  is the Bose factor), are characterised by the following behaviour: M *  increases 
with T at fixed H from the region H > A2 and decreases with T at H from the region 
H < A2; C, decreases with ti' at H < A2 and increases at H > A2 ( T  = const). 

It can easily be proved that for the phase with m = S equality r = 0 is valid and for 
all other m the value of Y varies over a very narrow range: from maximum value r = 1 at 
m =.O and arbitrary S to minimum value r = 22/2/3 = 0.94 at m = S - 1 and S- x. 

Therefore with a good accuracy one can assume? 

m = S  

w1 # s. 
Thus for the phases with m .it S some characteristics acquire universal form 

which do not depend on m and S but only on relative anisotropy 5. In equation (15) EA 
is the multicritical point coordinate. Respectively, the existence region of each phase 
with m f S is E E (1, to). Characteristics dependent on the relative magnetic field pre- 

t The approximations of this type might have upset relations like the Goldstone theorem and the Adler 
principle. However, collinear phases with m # S for which they are made are the phases with preserved 
symmetry. Consequently, these exact relationships are not valid. For numerical estimates this approximation 
is very good and allows one to simplify the results considerably, yielding some universality of properties at 
various m. 
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serve their explicit dependence on m and S. For example, the magnetic field at multi- 
critical point A(m) is 

It should be noted that far from the MP the excitation spectrum at small wavevector 
magnitude can be written in a simple form 

For the phase with m = S there is only one branch of collective excitations 

w $  = h - D(2S - 1 )  + Jos(1  - v k )  

B (since the sums over n in equation (2) are restricted to terms with n < S, branch m k  

possesses no dispersion). As U: = 1, U = 0, there are no zero oscillations. (This is quite 
natural since the zero oscillations in the collinear phases under consideration are the 
oscillations of the order parameter tensor components.) Owing to the absence of the 
second excitation branch and, consequently, of the second critical field, the multicritical 
point is absent too. Therefore the existence region of the phase with m = S is not 
restricted with respect to anisotropy: E E (0 ,  m). 

Let us introduce the Green functions by the relationships 

where T is the chronological operator and t is the imaginary time. Their Fourier 
transforms over discrete frequency w, = 2 m / P  are 

Let us also define the correlation functions 

n; = (a,'a,) = u;n(uF) + u;n(wi) + U; 
ni = (bpfb,,) = u;n (o i )  + u;n(w;) + U; 
,M, = (b,fa!,) = (a,b-,) = u P u p [ 1  + n(o;) + n(w,)]  B 

(19) 

with n(x) = (ep" - l)-', which will be necessary for determination of anharmonic cor- 
rections. 
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4. Anharmonic effects: renormalised spectrum, scattering amplitudes, excitation 
damping and free energy 

4.1. Polarisation operator 

According to Dyson’s equation the Green functions renormalised at the expense of the 
collective excitation interaction are connected with the polarisation operator. In matrix 
form this connection is 

(20) K-‘ = K-’ - fi 
where K and 
respectively, and fi is the matrix polarisation operator. 

are the matrices of spin-wave and renormalised Green functions, 

nPv = IJ A + 4- 
li 

io) ( bi 

Figure4. Graphs for polarisation operator components n,, (p, Y = a, U + ,  b,  b+) of the first 
orderinrr’. Singlelinescorrespondto theGreenfunctions K , , ( p ,  I, = a,u+,b, b+);double 
lines correspond to the Green functions Kfi+ (f = c, d).  In vertices there are trial interactions 
determined by X4 and X 3 .  

It can easily be proved that the account of X4 in the first-order perturbation theory 
and of Ye3 in the second-order theory yields the values of the polarisation operator 
components of the same order with respect to r i 3 ,  namely of the first order, since in 
both cases there is one summation over an intermediate momentum (see figure 4). Using 
an explicit form of the spin-wave Green functions (18) and interaction potentials defined 
by Ye4, one gets for 

in accordance with figure 4(a) 
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4.2. Spectrum of low-energy excitations and critical jields 

The expressions obtained make it possible to determine the spectrum renormalised in 
the first order of r i 3 .  Its reduced form is 

( P  = a7 P )  (23) = [ ( A f ) 2  - (gr 2 112 2 k )  1 
where 

A f  = A k  + AA$(4) + AA$(3) = B k  + AB$(4) + AB$(3) 
cf = C k  + Ac$(4) + Acf(3)  

= - [ f i g ) + ( k ,  t a$)  + n @ + ( k ,  7 Q$)]/2P (24) 

AC$e) = - [ f i g ) + ( k ,  k C l $ )  - f i&'+(k,  t Q$)]/2P 

AB$ce) = -[fibe,)(k, 3 Q i )  -I- fi jp!b+(k, 7 Qi)]/2g. 

(Bars in Ak, Bk and C k  mean reduction by the value of J o ( s 2  + s - m2);  the upper signs 
correspond to p = a.) 

The explicit expressions for the spectrum will be written and analysed for the cases 
of m = S and m f S separately. 

(i) The ordered phase with m = S .  In this case 

Amp = AAi4) + ACi4) + AAi3) + ACi3) 

= ( I / N )  nF{-JO(l - V k ) ( l -  v P )  + (2s- I ) J ~ D  
P 

( V k  + V p ) / [ J O s ( V k  + + 2D1) (25) 

where A o g  = ~5; - or. 
Expression (25) coincides with the corresponding expression ottained in [8] for an 

easy-axis FM ( D  < O), where for any values of anisotropy constant and field h at T = 0 a 
single phase, namely the saturated FM phase, is possible. 
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It should be noted also that at D = 0 the Goldstone theorem is fulfilled: 0," = 0. 

renormalised spectrum at small k has the form 
(ii) Partially ordered phases with m # S .  In the vicinity of the multicritical point the 

= [ 5 - t A ( T ) + Q k 2 I 1 / '  + p k * [ H - G A ( T ) + V p k 2 ]  (26) 

with 

( f  1 - 2F)  
(1 - m F ) ( f  - 3 m F )  
(1 - vP) I / *  + 4 - mF 

+ 
m F  1 6 - v p - v ;  

6H(O)= [3-(-6+zz ( 1  - v p ) @  

(1 + m F ) ( f  + 3 m F )  - (1 - m F ) ( f  - 3 m F )  
((1 - vp)Il2 + 4 + m F  (1 - vP)''* + 4 - 

1 + m F ) ( f  + 3mF) + (1 - m F ) ( f  - 3mF) 
4 + m F  4 - m F  

N - (  - i -  

In (26) and (27) 

2 --( 8 = kgT/Jo(S2 + S - m 2 )  
- 2 (1 - - V P ) 1 / 2  v p / 2  - 

Fis determined by (9) and c ( p )  = En n-p. The terms in the first large square brackets in 
expressions for SC(0) and 6H(O) as well as the first terms in the brackets in expressions 
for 6E(T) and 6 H (  T )  are given by X4 and others by X 3 .  Expressions for P ,  Q and Vare 
more cumbersome, and therefore they are not written out here. While calculating 
anharmonic corrections, we used the values 5 = gf) = 1. 

The position of the multicritical points with the account of anharmonic effects is 
determined by the renormalised values of relative anisotropy and magnetic field tA(0) 
andfiA(0) from (27).  A numerical estimate using thevaluesof integrals over the Brillouin 
zone for the simple cubic lattice 
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gives 

S5(4)(0) = 0.238 + 0.045F 

c?H(~)(O) = 0.04mF 

S5(3 ' (0 )  E -0.007N+ 

6H(3) (0 )  = -0.007N-. (28) 

Since the m- and S-dependent quantities included in N ,  vary over the range of 
mF E (0 ,  l / V 6 ) ,  f € (0 , l )  and correspondingly quantities N ,  vary over the range of 
N ,  E (0-0.9, N -  E (0-0.6),  one can draw the following conclusion about anharmonic 
renormalisation of the position of the multicritical point. Renormalisation of relative 
anisotropy at the MP At(0) is determined mainly by the four-operator anharmonisms; 
it is rather big and depends weakly on m and S on a background of the big contribution 
independent of the phase number and the spin value. On the contrary, in the critical 
field renormalisation at the MP AH(0) the contributions from X4 and X 3  are comparable 
and the resulting value increases with the growth of m and decreases with the growth 
of s. 

As to the temperature dependences, the critical field in the vicinity of the MP depends 
linearly on T: 

AHiY)(T) = AHiT)(T) = 6 [ ~ - ~ / ~ ( ( 2 ) ( 2  - N , / 1 6 ) / ~ ~ ~ ] l / ~  (29) 
where 

AH$T)(T) s Ei$)(T)  - Ei:T)(O) AH$T)(T) E E i $ ) ( O )  - Ei$)(T) .  

In the region not directly close to the MP the renormalised spectrum has the form 

1 
dA".@(O) = ~2 { (5 /2A1)[(3  + 2vP)u;  + 3~,U,v, + f ( v p u i  - U p u p ) ]  

1 
5 mF(3 + v p ) v i }  - -: ( [ u ; ( l  + ~,)~/4] 

N 

u i ( l  7 m F ) ( f T  3mF)  
X + 

P 

ug(l  * m F ) ( f +  3mF)  
+ - 45 7 m F  - + 45 * mF 

and 
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The values Rl(  f ,  m) and R 2 ( g ,  m) are equal to 

with 

(1 + mF)( f+ 3mF) + (1 - mF)( f -  3mF) 
- 

N ,  = 45 + mF - 2111.1 4 f - m F + 2 A l  

(1 + mF)(f+ 3mF) (1 - mF)(f-  3mF) + 
4 f - m F  ' 

M + ( f ) =  4 $ + m F  

In (30)-(33) and Hi?) are the dimensionless critical fields in the zeroth approxi- 
mation determined by (13); the values characterising the non-perturbative dispersion 
laws E ~ ,  up and up are determined by formulae (15) and (12); A I  = and A*,B and Ua,b 
are determined by (17), F by (9). In the formulae for 6AE,@(0) and R1,*($, m) the 
expressions in the first braces are due to X4 and the others are due to X 3 .  Values N,(  E )  
and M+( E ) ,  reflecting the explicit dependence of relative temperature corrections from 
m and S, at f = 1 pass to Ni from equation (27). 

The lines of renormalised spectrum (30) softening determine the renormalised criti- 
cal fields outside the closest vicinity of MP 

where 6A*,B(O) are determined from (31). 
Analysing formulae (30)-(32) one can draw the following conclusions about the role 

of anharmonic effects at T = 0. (i) Owing to anharmonic interaction the collinear phase 
existence region broadens, i.e. the existence region of the phases with spontaneously 
broken symmetry narrows, which is quite natural from general considerations. (ii) The 
critical field renormalisation is non-symmetric: sA*(O) > dAP(0). (iii) The m and S 
dependence of anharmonic corrections at T = 0 is the following: at D/Jo  = const, S = 
const they decrease with increase of m; at D/Jo = const, m = const they increase with 
the growth of S. Thus, at fixed S anharmonic corrections at T = 0 are maximum for the 
non-magnetic phase with m = 0 and minimum (zero) for the saturated ferromagnetic 
phase with m = S. At first glance the S dependence of corrections might seem unusual; 
nevertheless it reflects the general tendency. Anharmonic effects are more pronounced 
the farther the phase is from the saturated ferromagnetic one, i.e. the bigger is the role 
of tensor components in the construction of the spin order at T = 0. At m = const (and 
m # S) the growth of S is accompanied by the growth of S - m, avalue that characterises 
the degree of deviation from the saturated FM phase. 

For the fixed phase (m,  S = const) anharmonic effects at T = 0 increase with the 
decrease of D/Jo and become maximum in the vicinity of the MP; the field dependence 
of anharmonic corrections at T = 0 is absent. 
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4.3. Scattering amplitudes; excitation damping 

Outside the close vicinity of MP it is convenient to pass to the concept of the quasi-particle 
scattering amplitudes with which the temperature parts of anharmonic corrections to 
various physical amplitudes are connected by simple linear relationships. For example, 
for the spectrum and free energy they have the form [ 4 , 9 ]  

In (35) and (36) P U ( k p ,  p k )  are the forward scattering amplitudes corresponding to the 
normal scattering processes conserving the number of quasi-particles. The amplitudes 
corresponding to anomalous processes not conserving the number of quasi-particles in 
the first order in r i 3  do not make contributions to anharmonic corrections, so in this 
order the interacting quasi-particle gas is described by the effective Hamiltonian con- 
serving the quasi-particle number (for the phase with m = S this is valid in any order in 
ro3 since vk = 0). This is not valid in the vicinity of the MP where the scattering amplitudes 
corresponding to normal and anomalous processes are involved on equal grounds in all 
formulae since the non-perturbed frequency &k to which the correction from the normal 
process amplitude is added tends to zero at k- ,  0. 

In the first order in r i 3  the scattering amplitudes P " ( k p ,  p k )  are determined by the 
plots presented in figure 5 .  The explicit expressions for the forward scattering amplitudes 
have the form (for relative amplitudes r = ( r / J , ( S 2  + S - m 2 ) ) :  

( i /P)r""'4'(kp,pk)  = -{(vk + vp) [2 (u iu i  + v i v i  + ukvkupvp) 

f u i v i  + v:u;]  + r[(vk + 3vp)upvp(ui + vi) 
2 2 -  2 2 + ( " p  + 3 v k ) u k v k ( u ;  + + m F [ 2 ( v k  + v p ) ( u k u p  u k u p )  

f ( vk  - vp) (u iu i  - u;v:)] - 2F(1 + vk-p)(UiUi + uivi) 
+ ~ F ( U ; U ~  + U Z V ; )  + 4 V k - p F ~ k v k ~ p v p } / 2  

( i / P ) r " P c 4 ' ( k p , p k )  = -{(vk + v p ) [ 2 ( u i v ;  + v iu j  + ukvkupvp) 

+ v i v i  + uiu; ]  + r[(vk + 3vp)upvp(ui + v i )  + (vp + 3vk)  

x ukvk(ui + v i ) ]  f mF[2(vk + vp)(u:v;  - v i u ; )  

+ (vk - ~ p ) ( u ~ u i  - v i v i ) ]  - 2F(1 + vk-p ) (u iv i  + u i u i )  

-t ~ F ( u ; u ~  + V i U i )  + 4F~k- ,ukvkuPVp} /2  

(37) 

pxp 
V V 

x/ 
V V 

Figure 5. Diagrams for the forward scattering amplitudes P " ( k p ,  p k )  of the zeroth order in 
r i 3  (p, v = a, p). V ,  and V ,  are the trial interactions determined by Hamiltonians X 3  and 
X4 after performing U--U transformation. Other notation is the same as in figure 4. 
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and 

Expressions (37) correspond to the first diagram in figure 5 ,  expressions (38) to the 
second one; upper index '3' or '4' indicates contribution from X 3  or X4, respectively. 
Total amplitudes are 

I=fi'"(kp,pk) = FP'"("(kp,pk) + W ' 3 ' ( k p , p k ) .  

(Expressions for r@B(3)(kp, p k )  and r@(4)(kp ,  p k )  can be obtained from the expressions 
for r""(3)(kp, p k )  and i'""(4)(kp, p k ) ,  respectively, by replacement a * P ,  c d . )  In the 
limit of small k and p determining the values of integrals by wavevectors at low T 
occurring in the calculation of various physical characteristics, the amplitudes are equal 
to 

(The '+'sign corresponds to ,p = CY, the '-' sign t o p  = P.) Let us analyse the dependence 
of long-wave amplitudes on m, S ,  D/Jo and h/Jo. It can be easily seen that within each 
phase the absolute values of amplitudes (39) decrease with the growth of D/Jo and do 
not depend on h/Jo. At D/Jo = const, S = const the absolute magnitudes of long-wave 
amplitudes decrease as the phase number m increases; at D/Jo = const, m = const they 
increase as S does. This is valid for the phases with m # S when the contribution from 
four-particle processes (the first terms in expression (33) for 5, m)) is predominant. 
For m = S ,  when at small k and p the contribution from three-particle processes is 
predominant, the dependences are the opposite: increase with growth of D/Jo at S = 
const and decrease with growth of S at D/Jo  = const (explicit form of amplitudes for 
m = Swill be given below in (43)). 

According to (37) and (38) for any phase m at small k and p there is quasi-particle 
repulsion; then at some k andp the amplitudes pass through zero; and then quasi-particle 
attraction appears, which enhances as k andp grow. This attraction remains finite until 
conditions 

are fulfilled. These are the conditions of stability against merging of two quasi-particles 
into one excitation of the c or d type. If k achieves such values k," and k [ ,  starting from 
which for some p inverse inequalities are fulfilled then, at k > k [  the Q X  spectrum 
becomes unstable against these merging processes. The respective damping is deter- 
mined by formula 
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and is equal to 

(In (42), n ( x )  is the Bose factor, 

x > o  

x < o  

in YI index 1 = c for p = (Y and 1 = d for p = p.)  One can easily prove that for all partially 
ordered phases with m # S at any k and p conditions (40)  are fulfilled at relative 
anisotropy values { > 1 corresponding to the existence regions of these phases and 
damping (41)  is absent. 

For the phase with m = S for which there is only c mode and the explicit form of the 
scattering amplitude at arbitrary k and p is 

the same situation is realised at D > SJo (which also corresponds to { > 1 ) .  At D < SJo 
(i.e. { < 1 coming into the existence region of this phase the magnitude of k," is deter- 
mined by the equality 

v k ;  = 1 - 2D/SJO (44) 

where vk is determined by (11) .  Thus with decrease of D the quasi-particle damping (42) 
appears (but only at T # 0 since U 2 = 0 for m = S) first at D = SIo only at the Brillouin 
zone boundary, and then the region of wavevectors with non-zero damping increases 
and at D = 0 coincides with all the Brillouin zone; the magnitude of damping decreases 
with decreasing D. 

A similar but mirror-symmetric picture is also typical of the phase with m = S at 
D < 0 when the saturated ferromagnetic phase is the only possible phase at h = h,. In 
this case amplitude (43) describes quasi-particle attraction at small k and p with the 
following passing through zero and repulsion at large k andp. The condition of stability 
against merging processes has the form Y,  G min, ( Q ;  + Q;) ,  and is fulfilled at 
ID( > SJo. At ID( < SIo instability of the long-wave part of the spectrum appears at 
k < kg .  The magnitude of k," is determined by equality v k ;  = 2 1 D I/SJ, - 1 ,  and damp- 
ing due to these processes is determined by (42) on replacement k - k [  + - ( k  - k { )  
and change of the sign of the arguments of the function n ( x ) .  

It should also be noted that the ordered phase with m = S is, on the one hand, the 
limiting case of phases in the cascade of field- or anisotropy-induced phase transitions 
and, on the other hand, it is the only phase in the cascade whose low-temperature 
dynamics can be described by means of the standard Maleev-Dyson and Holstein- 
Primakoff transformations. This makes it possible to compare the results of this paper 
with known results and, on the whole, the results of the approach using the special 
transformation to the Bose operators for the algebra su(n)  [6] with the results based on 
the Maleev-Dyson representation in the region where both approaches are applicable. 
Analysing the results obtained we can make the following statements: (i) fulfilment of 
all symmetry requirements, namely the Goldstone theorem and the Adler principle at 
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D = 0, and kinematic condition at S = 1 / 2 t ;  (ii) qualitative coincidence of the described 
behaviour of scattering amplitude and excitation damping in the case of D < 0 with 
the exact results obtained for the easy-axis ferromagnet [ l o ] ;  (iii) full quantitative 
coincidence of the results for the easy-axis case with those of [ 8 , 1 1 ]  obtained on the 
basis of the diagram technique for the Hubbard operators. Anharmonic effects in the 
case of the SA easy-plane symmetry have not been considered previously (with the 
exception of the limiting case D/Jo < 1; see, for example, [ 1 2 , 1 3 ] ) .  

In addition to damping (41)  due to the three-particle processes and corresponding 
to the first order in ro3  there is, as usual (e.g. [ 9 ] ) ,  damping due to the four-particle 
scattering processes and corresponding to the second order in r i 3 .  In the general case 
for an arbitrary phase m it is determined by the formula 

ri% = ( 8 n / P 2 n X ) 2  [ngng(l+ n g + p - k ) l r p ’ ( k , p  + q - k;pq)12 
4P 

+ n g n ; ( l +  n ; + p - k ) / r ’ ” ( k p  + q - k;pq) l21  

x d(&p + &q - & q + p . . k  - & k ) .  

~ 1 %  - r i 6  e-Aple A.;4(32R:(5, +m). 

(45)  

(46) 

At small k explicit calculations give 

4.4.  Exciton-type modes 

In the foregoing we considered the behaviour of two low-lying modes. It is interesting 
to note that due to three-bosonic-operator interaction dispersion also appears in two 
modes localised in the spin-wave approximation, namely in the c- and d-type modes. In 
fact, in the Born approximation their dimensionless frequencies have the form 

(47) 
1 -  

k - y c  - -nee+ ( k ,  Y c )  a d - y  k -  d --n d d + ( k r  y d ) *  
1 -  Q c  - 

B B 

Figure 6 .  Diagrams of the first order in ro’ for 
polarisation operators of high-lying excitations 
I&,+ and & + .  Notation is the same as in figure 

IJ 4. 

The plots for polarisation operators n,,+ and ndd+ are shown in figure 6. The cor- 
responding analytical expressions are 

t For phases with m # S the Adler principle cannot be fulfilled since these phases do not allow the limiting 
transition to D = 0, and the kinematic condition is provided by the fact that at S = 4 the maximum critical field 
at T = O,hg = D(2S - l),isequal tozero.Thusonlyonephasewithm= Sisrealisedandalleffectsassociated 
with the existence of partially ordered phases disappear. 
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(Formula for f i d d +  can be obtained from (48) by replacement ~2~ W, Vac+ Vbd . )  
From (47) and (48) one can easily get an explicit form of dispersion laws of the modes 
under consideration. In particular, at T = 0 we have 

2 2  
u;u;-, v k v k - p  + Q2pa + S2&, - Y ,  Q p P  + Q f - ,  + Y ,  (49) 

For the phases with m # S these modes are non-damping at T = 0 for all values of 
wavevectors since, as was mentioned before, the inelastic three-particle processes (in 
this case the processes of decay of the c- and d-type excitations into two quasi-particle 
of a and p type) are only virtual at f > 1 corresponding to the existence regions of these 
phases. The same is valid for the phase with m = S at f > 1, i.e. D > SIo. At 5 < 1 there 
is a critical value of wavevector ko determined by equality? v ko/2 = D / S J o  such that at 
k < k,, damping at T = 0 appears given by 

y: - D2(2S - l)(k$ - k2)ll20(kO - k). (50) 
It should be noted that with the decrease of D the region of wavevectors where there 

is damping (50) broadens. On the other hand, however, damping intensity decreases so 
that at whatever small D there is a region of the stability modes in the Brillouin zone 
angles. 

4.5. Free energy 

The above modes are of the exciton type. They are essential in the investigation of 
optical properties, ferromagnetic resonance and so on, but produce almost no effect 
on the system thermodynamics at low temperatures. The system thermodynamics is 
determined by the free energy form whose temperature part consists of two terms. The 
free energy of non-interacting quasi-particles (not trial ones but with the account of 
spectrum renormalisation at T = 0) is described by the standard expression 

The correction due to the dynamic quasi-particle interaction outside the closest vicinity 
of MP has the form (36). Explicit calculations give 

A F l n t ( T )  = JoS(S + 1)03A;2[I'(3/2)/4n2]2[R1(f, m) 

x ( U " )  -3 Z$z ( A  "/e) + R ( 5 ,  -m)( U p )  -3 2gI2 ( A  /e)  
+ R 2 ( 5 7  m)(u" UP)-3'223/2(An/e)23/2(Ap/e)].  (51) 

Knowing explicit expressions for the free energy, one can determine the behaviour of 
any thermodynamic functions on the basis of thermodynamic relationships. 

5. Antiferromagnetic exchange case 

The Hamiltonian has the same form as in the ferromagnetic exchange case but J ,  < 0. 
Respectively in the Gaussian approximation the spectrum of two low-energy modes with 

t This equality is obtained from the condition of stability against decay Y,(k) 5 maxp (Q; + a;_,), i.e. 
condition D z SJovk/z .  
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dispersion for collinear phases with number m (the phases with flipped sublattices and 
sublattice magnetisation (Sz)f = m) has the form 

where 

E = D/[ l(s2 + S - m 2 ) ]  H = h/[  IJo I ( S 2  + S - m')] 

other notations being the same as in the FM case. The value of Y is determined by formula 
(14 ) .  The frequencies of the c- and d-type modes are 

Y ,  = 4 5 ( 1 -  m )  + 2(H - mF) Yd = 4g(1 + m) - 2(H - mF). (52a) 
Functions of the U-v transforms are 

Frequencies Q f decrease with the growth of wavevector magnitude. Their softening 
lines at the wavevectors corresponding to the Brillouin zone boundary (uk = - 1) 
determine the lines of the second-order phase transition 

= A2 * A 1  

( 5 4 )  
m = S  

A2 = m(2g + 3F/2) 

to non-collinear antiferromagnetic phases whose spin-order structure differs from the 
order structure in non-collinear FM phase discussed before only in that, instead of 
perpendicular magnetisation component (easy-plane magnetisation), they have per- 
pendicular magnetisation component of the sublattice. Indeed, in the non-collinear FM 
phases, the change of the magnetic field from Hi?) to at D/Jo = const rotates 
the magnetisation vector from the direction parallel to the external field to a direction 
forming the maximum angle with the z axis at some point within the phase region and 
then brings this vector back to the z axis. And in the AFM case, rotation from the flipping 
sublattices with magnetisation vectors parallel to the magnetic field to the maximum 
angle between these vectors at some point within the interval (H$) ,  Hi?+1)) and then 
reverse rotation to the flipping sublattices occurs. The magnitude of the maximum 
critical field at fixed D/Jo is h$d = h - D(2S - 1) - 2 /J0  1 .  The coordinates of multi- 
critical points, which are determined by equality Hi?) = H(") c2 , are 

6 A  H A  = m(2 + 3F/2) .  (55) 
At these points the dispersion law of soft modes (two degenerate modes at the Brillouin 
zone boundary) is linear as opposed to all other points of lines H i y ) ( E )  where there is 
one soft mode with quadratic dispersion law. On the whole, the phase diagram structure 
is the same as in the case of the FM exchange. 

Prior to investigating the anharmonicity effects, let us give an explicit form of the 
low-lying excitation dispersion law at wavevector values in the vicinity of the Brillouin 
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zone angle (i.e. in the low-energy limit) form f S: 

Q $  = Ab + WWq2 (,U = a, P ,  4 = kb - k ,  V k b  = -1) 

This expression is valid outside the multicritical points. For the phase with m = S there 
is one mode 

Q $  = H - (2s  - 1)E + 1 + ~ k .  (57) 
Anharmonic corrections are described by the same formulae as in section 4 with 

replacement .lo-+ - IJol ,  i.e. by formulae (35), (41), (45), (23) and (24), where polar- 
isation operator components and scattering amplitudes are determined by formulae 
(21)-(22) and (37)-(38) using U:, U:, Q $ , B  and Yc,d given by equations (52)-(53). It 
should be noted that in expressions containing sums over wavevectors the main con- 
tribution to these sums is made by wavevector values close to the Brillouin zone bound- 
ary. For example, the temperature corrections for the Brillouin zone boundary 
frequencies S2 $b governing the temperature behaviour of critical fields are determined 
by the amplitudes rpY(kbPb, Pbkb), and the temperature corrections for the Brillouin 
zone centre frequencies Qi; governing the temperature dependence of the uniform 
ferromagnetic resonance and the Raman light scattering frequencies are determined by 
the amplitudes rpY(Opb, pbo). 

Analysing the behaviour of scattering amplitudes at various k andp one can see that 
qualitatively it is the mirror reflection of the FM case, namely, at small magnitudes of k 
and p the quasi-particles of identical type are attracted and at large magnitudes of k and 
p they are repulsed. Thus the amplitudes we are interested in are? 

and 

t It is interesting to note that the values of amplitudes rp”(Opb,pbO) are determined exclusively by four- 
particle scattering processes since the contribution from three-particle processes proportional to v k  + v p  is 
equal to zero at k = 0 , p  = Pb. 
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In (58a) and (58b) 
fw E / I J o  1 ( S 2  - m2 + S )  

and formulae for N,(E)  and M + ( E )  coincide with formulae (33). The '+' sign in 
Q1(5, rm) and P1(E, k m )  corresponds to p = a, the '-' sign to p = @. The values 
Ql(f ,  m),  Q 2 ( E ,  m)  and P2(5,  m)  are positive at any 5 from the existence region of 
phases with m # S; Pl( 5, m) is negative at sufficiently large E corresponding to the 
region far from the multicritical points. The difference in the scattering amplitude 

' signs for identical quasi-particles in cases (58a) and (58b) results in different signs of 
temperature corrections to the frequencies at the Brillouin zone boundary and centre 

AQ ,fb ( T )  = O3l2 A ;' [r(3/2)/4n2][ ( W ") -'3/2 Q ( E ,  m)Z3,2 (A "/e) 
+ (w') -3'2 Q 2 (5, m)Z3/2 (A '/e 11 

AQfb ( T )  = 83/2A;2[r(3/2)/4n2][ (Wa)-3 /2Q,  ( E ,  m)Z3/2 (A'/e) 

+ (W "> -3'2 Q2 ( f , m)Z3/2 (Aa /e>  1 
(59) AQ 0" ( T )  = e3l2 [ E( - 1) 'I2] - [ r( 3/2)/4n2][ ( w ") -3/2 p1 ( E ,  m ) ~ , , ~  (A "/e ) 

m g ( T )  = e3/2[ E( 5 2  - 1)1/2] - l  [r(3/2)/4d][ (wa) -3/2 

+ (w') -3/2P2(E, m)Z3/2 (A'/e 11 
5, -m) 

X z3/z(A8/e) i- (w")-3'2P2(E, m>z3/,(Aa/e)1 
where 

AQ$(T) C2$(T) - Sij!(O). 

As a result, a qualitatively different frequency-temperature behaviour at the Bril- 
louin zone boundary and centre is observed. Namely, at k = kb the frequencies of both 
excitation modes increase with T. At k = 0 the frequency of the a mode decreases with 
Tfor values of Hclose to Hi?) and increase for values of Hclose to HLy); the behaviour 
of the @-mode frequency is quite the opposite. Respectively, critical field Z@)(T) grows 
with T and critical field 8 $ ) ( T )  decreases with T.  The behaviour of the Raman light 
scattering frequencies and uniform ferromagnetic resonance frequencies coincide with 
the behaviour of 0"'' ( T ) .  

For the phase with m = S the form of the scattering amplitude T""(kp, p k )  at arbitrary 
k and p is determined by equation (43). Hence r""(opb,pbO) = 0. The form of the 
anharmonic correction AQ,U(T) is determined by amplitude r""(Op, P O )  at small mag- 
nitudes of wavevector q = pb - p .  It is given by the expression 

The behaviour of the anharmonic correction Amp, is similar to the behaviour for phases 
with arbitrary m: 

Consideration of collective excitation damping due to inelastic processes (i.e. damp- 
ing appearing in the first order in r i 3 )  leads to the following result. As in the FM exchange 
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case, the excitation damping yfd is absent at any k for phases with m # S, which is due 
to the limitation of the relative anisotropy constant characterising the region within 
which these phases exist ( 5  3 1). For the phase with m = S, damping ~ $ 2  is absent at 
5 = D/SIJol > 1. At 5 < 1 it is 

The difference from the ferromagnetic case consists of the following. When the ani- 
sotropy attains its critical value, the damping appears starting from the Brillouin zone 
centre but not from its boundary. When D decreases the region of wavevectors where 
damping (62) is observed increases and at D = 0 coincides with the entire Brillouin zone. 
The damping magnitude, however, decreases and tends to zero at D-, 0. Damping 
(62) determines the linewidths of uniform ferromagnetic resonance and Raman light 
scattering at low T.  The short-wave portion of the spectrum determining the critical 
behaviour of the system remains stable against inelastic processes. 

Damping of a and p quasi-particles due to four-particle processes has qualitatively 
the same form as in the FM exchange case (the value Q1(5, m) appears in formula (46) 
instead of R I (  5 ,  m ) ) .  The same is also valid for the frequency shift and damping of high- 
lying c- and d-type excitations. The general form of equations (47)-(50) is preserved, 
only one has to substitute Q{ , Yc,d,  u2 and U ;  from (52) ,  (52a) and (53).  As in the FM 
case these modes prove to be stable at T = 0 in the entire existence region of the phases 
with m # S and in the region of large relative magnitudes of anisotropy D/S (lo I > 1 for 
the phase with m = S. When the anisotropy constant becomes critical (D = S lJo I), the 
excitation damping originates at the Brillouin zone centre. As D continues to diminish, 
this damping occurs in the ever-increasing part of the Brillouin zone. It has the form (50) 
with replacement D/Jo + D /  IJo 1 .  

6. Some peculiarities of the critical behaviour at quantum field- and anisotropy-induced 
reorientational phase transitions 

Let us discuss now some peculiarities of the critical behaviour at the quantum reori- 
entational phase transitions (RPT) (transitions at T = 0) induced by magnetic field and 
single-ion anisotropy?. Naturally, perturbation theory is not valid for a quantitative 
description of the second-order phase transition but some qualitative conclusion as to 
the critical behaviour of the system may be drawn by using the spin-wave approximation. 

First of all one should state that when the Hamiltonian includes external fields of two 
types-magnetic h"S" and quadrupolar (SA fields) D "(Oy k 0;")-the system 
response to external actions is determined by the isothermal static susceptibility tensor 
(8 X 8) including the magnetic susceptibility tensor components x$ = -d2F/ah"ah@, 
quadrupolar susceptibility tensor components x7 = -d2F/aDm aDn and mixed sus- 
ceptibilities x "" = - a2F/d hffa D". When studying D = Do anisotropy-induced reori- 
entational phase transition (RPT), of special interest is the behaviour of the quadrupolar 
susceptibility x$, and in the event of h = h, field-induced RPT the magnetic susceptibility 

t As to the critical behaviour at a field- or anisotropy-induced RFT in the case of T # 0 it should be noted that 
at arbitrary small but finite T there is an arbitrary small but finite fluctuational region where the system's 
critical behaviour coincides with the behaviour at the temperature-induced phase transition (classical PT), 
which is described by the known scaling theories; see for example [14], and see too [15,16]. 
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x$ presents special interest, both characteristics playing the same part as the heat 
capacity C = - T(a2F/a T 2 )  in the case of temperature-induced phase transitions. Let us 
consider their behaviour in the vicinity of the RPT points within the collinear and non- 
collinear phases. 

6.1 .  Collinear phases 

Magnetic susceptibility is identically equal to zero since (S') = m is an exact equality 
at T = 0. The critical behaviour of the quadrupolar susceptibility 2 8  can be determined 
from the general form of the connection of the fluctuation Gaussian correction to the 
ground-state energy with the spectrum (see e.g. [4]): 

( A  { are the factors of the bilinear form X 2 )  and the expressions for the spectrum (11) or 
(52). Preserving the most singular terms one obtains 

X Q  00 ( ~ 5 ) ~ - 3 ) / 2  (64) 
where A t  = 15 - EA 1 is the distance to the multicritical point. 

Thus we can conclude that, within the collinear phase, the critical behaviour is 
observed only at the multicritical points when the RPT is anisotropy-induced. And the 
border line dimension of space according to (63) is 3 (d, = 3). At other points of lines 
Hi?)( E )  the critical fluctuations are absent. 

6.2. Non-collinear phases 

Let us start from expression (63) for AEo and the expression for the Goldstone mode 
spectrum, which in the vicinity of lines HLy)(g)  but outside the close vicinity of the 
multicritical points has the form [ 11 

w k  = [ A k 2 ( A k 2  + Bz)]'I2 (65) 
where z = Ah = [hi?) - hl in the case of the field-induced RPT and z = A D  = ID;?) - 
D I in the case of the anisotropy-induced RPT. Respectively, for the fluctuation parts of 
the susceptibilities one obtains 

1 
Ax? - - 2 [ p / ( A p  + - (AD)d12-' 

N P  
1 

Ax" - - z b / ( A p +  B A h ) 3 ' 2 ] - ( A h ) d / 2 - 1  
N P  

so that the border line dimension is equal to 2 (d, = 2) for the field- or anisotropy- 
induced RPT points (except the multicritical points). 

For the anisotropy-induced RPT at the multicritical points the critical mode is not the 
Goldstone but the optical one? whose spectrum has the form 

wk = ( a A 5  + pk2)1'2.  (67) 

t This was shown in [17] where the collinear phase behaviour in the vicinity of multicritical point AIo) at S = 
I was investigated. This behaviour, however, is universal for any multicritical point A'"). 
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Hence one obtains 
02 - ( A g ) ( d - 3 ) / 2  Ax Q 

i.e. the same behaviour as that observed within the collinear phases. The field-induced 
RFT at the multicritical points is impossible since at 5 = EA and change in the field on 
both sides from the MP, the non-collinear phase is realised. 

It should be noted that the critical behaviour of the system under consideration at the 
field- or anisotropy-induced RPT points except the multicritical points qualitatively 
coincide with the critical behaviour of the XY model at the RPT induced by a field 
perpendicular to the XYplane. (As was shown in [1&21] using the phenomenological 
approach, this behaviour is characterised by d, = 2 and by the coincidence of the exact 
critical exponents with those used in the mean-field theory.) This is associated with the 
same symmetry of the systems: in both cases quantum RPT characterised by a two- 
component order parameter take place. Microscopically, this behaviour as mentioned 
above is conditioned by the fact that the Goldstone mode sound velocity tends to zero 
at the RPT point. Qualitatively different critical behaviour at the multicritical points 
characterised by d ,  = 3 is due to the existence of the soft mode with linear dispersion 
law at these points. 

7. Summary and conclusions 

In the present paper cascade of field- or anisotropy-induced RPT in magnets with the 
easy-plane SA is studied and the low-temperature description of collinear phases in the 
cascade is offered. In particular, we calculated the renormalisation and damping of the 
excitation spectrum due to the anharmonicity effects, found the values of the critical 
fields, investigated the .low-temperature thermodynamics and discussed the critical 
behaviour at T = 0. The theory is developed for the case of arbitrary spin and arbitrary 
relationships among the anisotropy parameter, magnetic field (perpendicular to the 
easy plane) and exchange constant. 

It should be noted that, to date, only the simplest phases in a FM with SA of arbitrary 
value were investigated, namely, saturated FM phases [8,10,11] and non-magnetic ones 
[2], and now complete dynamic theories for these phases are available. Some other 
phases were also studied, only in the lowest (Gaussian) approximation and for a fixed S 
(e.g. [22] for S = 2, [23,24] for S = 3/2, etc). The present paper can be considered as 
an extension of these studies in the following directions: 

(i) the generalisation for an arbitrary S, 
(ii) taking into account all phases where the universal description for arbitrary S can 

(iii) inclusion of the anharmonicity effects in the dynamic theory. 

We have demonstrated that the phase diagram and the behaviour in the whole of the 
magnet with single-ion anisotropy differ dramatically from that of the magnet with 
exchange anisotropy of the same symmetry. We should emphasise: (i) the fact that there 
is more than one symmetrical phase (2s in the case of complete cascade) and 2S phases 

be given? and 

t Non-collinear phases cannot be treated in universal manner because one should make the unitary trans- 
formations of the SU(2S + 1) group, specific for each S, when constructing such a theory [ 6 ] .  
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(instead of one) with spontaneously broken symmetry for the Hamiltonian with single 
non-trivial symmetry transformation, exp(ip,S'); and (ii) the alteration of spontaneous 
breaking and spontaneous restoration of symmetry that takes place when the magnetic 
field changes monotonically. These peculiarities are connected with the following cir- 
cumstances. In the presence of the single-ion anisotropy (which is the local tensorial 
interaction) the state of the system is described by operators that belong to the Lie 
algebra SU(n) ( n  = 2S + 1) (see for example [6]) characterised by rank Y = n - 1 > 1 
instead of the Lie algebra SU(2) (Y = 1) in the case of (vector) exchange anisotropy. The 
rank of the algebra just defines the number of possible symmetric and non-symmetric 
phases in the system under consideration. 

As to the peculiarities of each phase, it was interesting to trace the transformation 
of a properties of the phases in the cascade with the transformation of the spin-order 
structure from full ferromagnetic order for m = S to full tensorial order for m = 0. It 
was found that the closer the phase was to the full ferromagnetic one (the lesser S - m) 
the more adequate was the harmonic description at low T.  The effects of anharmonicity 
are intensified with growing difference S - m, i.e. with decreasing m at fixed S, the 
anharmonic corrections achieve maximum values in a non-magnetic tensorial phase, for 
which we have evaluated them quantitatively at T = 0. The mentioned dependence on 
S - m leads in particular to unusual behaviour such as the growth of relative anharmonic 
corrections with growing S for a phase with fixed m (except for the case m = S), for 
example for the tensorial phase. The relative values of anisotropy and field in MP increase 
with growing S, and the region of existence of all collinear phases with m = S shifts to 
infinity with S + x; thus we reach the classical limit. So the existence of the phases under 
consideration is especially a quantum effect. 

As to the temperature laws for the various physical characteristics for each collinear 
phase, these are certainly predetermined by their symmetry. Just preservation of sym- 
metry relative to the transformation exp(iq?S') leads to the existence of an energy 
gap for the low-lying mode, and consequently to the dependences characterised by Z 
functions (see for example equations (32) and (51)) for the region far from the RPTpoints 
and the half-integer power dependences (see equation (34)) for the region close to the 
RPT points (but beyond the fluctuational region). Two remarks should be made: 

(i) The signs of the temperature corrections are such that within each partially 
ordered phase area there are two ranges where the system properties differ qualitatively: 
the range H > A2 where the properties are similar to that of the disordered phase with 
m = 0 (magnetisation increases with T at h = const, D = const; magnetisation and 
longitudinal magnetic susceptibility increase with h at T = const, D = const; etc) and 
the range H < A2 where the properties are contrary to those described above and similar 
to those of the ordered phase with m = S. 

(ii) In the vicinity of the MP where the soft modes have a linear dispersion the 
temperature dependences transform to the integer power laws (see equations (27) and 

The above-mentioned behaviour of the thermodynamic functions and the critical 
fields is determined by two low-energy collective modes. As was shown, two additional 
high-energy modes are present in the spectrum. These modes correspond to the localised 
excitations in the Gaussian approximation and acquire dispersion due to the interaction 
with low-energy quasi-particles. The existence of these modes should be manifested in 
the Raman spectra, ferromagnetic resonance, inelastic neutron scattering, etc. 

Finally, one should also mention the peculiarities of the critical behaviour of the 

(29) 1 * 
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system at the RPTinduced by a magnetic field and single-ion anisotropy at T = 0, namely, 
the difference in the behaviour at the multicritical points A(") and at all other points of 
the lines H$y)(E) .  It is due to the different character of the soft mode dispersion law, 
which is linear at MP and quadratic at all other points of lines H F ) ( g ) .  

The experimental realisation of the investigated RPT cascade is possible in magnets 
with a significant value of the single-ion anisotropy constant, for example in the rare- 
earth compounds. Here the number of RPT in the cascade and the shape of the phase 
diagram on the whole depends on the hierarchy of the critical fields Hiy)  at fixed 5 = D /  
2 J 0 ,  in particular on the value of m starting from which Hi?) and H:?) become real and 
positive. It follows from equations (13) and (12) that, dependingon the relation between 
S and D/Jo,  the cascade may be complete (right from m = 0 for integer values of S and 
m = 1 for half-integer S )  or partial, and may start from the collinear phase as well as the 
non-collinear one (on both the ascending and descending parts of T,(H) in the latter 
case). An increase in S or a decrease in D/Jo causes an increase in the value of m from 
which Hi?) become real and positive values. As to the experimental data available, one 
should mention [25],  where an apparently similar cascade of RPT was observed in 
compounds AFeC13 (A = Rb, Cs) and FeSiF6.6H,0 with S = 2, and the experiments 
for the non-magnetic phase of singlet magnets, for example for Ni(C5H5N0)6 and 
Ni(N03)2.6H20 with S = 1 [26,27]. We did not find any experimental data on the 
properties of the intermediate phases with m # S. 
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